
1 1 1
NSWCDD-PN-14-00391 is approved for Distribution Statement A:

Approved for Public Release; distribution is unlimited.

SOFTWARE CRITICALITY

Software Safety Tutorial

Student Handout
NSWCDD-PN-14-00391

2 2 2
NSWCDD-PN-14-00391 is approved for Distribution Statement A:

Approved for Public Release; distribution is unlimited.

Software Criticality Analysis Worksheet

STUDENT HANDOUT - POPULATE 2.a - 2.i
2.a

Safety-

Significant

Function

2.b

Safety-

Significant

Function

(Portion)

2.c

CSCI

2.d

Software

Function

2.e

Related Hazard

Number from

VIPPS Worksheet

2.f

Level of Mishap

Severity for the

Identified Hazard

2.g

Software

Control

Category

2.h

SwCI

2.i

Level of

Rigor Tasks

Required

SSF #6:

Verification

of Gun

activation /

deactivate,

and

movement

Commands

Verify

Activate

(Fire on fire

cmd only if

GSS

ADDRESS

in fire cmd

matches)

Gun

Controller

3 3 3
NSWCDD-PN-14-00391 is approved for Distribution Statement A:

Approved for Public Release; distribution is unlimited.

Software Criticality Analysis Worksheet
Use for Columns 2.e and 2.f

VIPPS is a Mock

System used for

training purposes only

4 4 4
NSWCDD-PN-14-00391 is approved for Distribution Statement A:

Approved for Public Release; distribution is unlimited.

VIPPS Functional Flow Diagram
Use for Column 2.g

SSF-6: Verification of

Gun Activation /

Deactivate and

Movement Commands

Execute Fire

Command

(GSS ADRS (x))

GCC

Operate Gun

Process EF_ID
Receive and process EF

commands

Validate MSG
Validate command in sequence and

intended for ADRS Gun

Command

Fire Gun (x)

Operator

Command Gun

(x) to Fire

C2

Designate

Gun (x) to

position

Operator

Command Gun (x)

to desired position

via EF37

C2

Cmd GCU move gun to

required azimuth and elevation

GCC

Periodic - convert video signal

to digital and send via ID 26

GCC

OPERATOR / C2 LEVEL

GUN SUBSYSTEM

LEVEL

GUN SOFTWARE

FUNCTIONAL

LEVEL

PROCESS EF_ID FUNCTIONAL
DESCRIPTION

Process EF_ID function performs initial
processing of gun command messages by
verifying message transfer using a Cyclic

Redundancy Check (CRC) then sending the
message to the Validate Msg Function.

Activate

(Fire on fire cmd only if GSS

ADDRESS” in fire cmd matches)

VIPPS is a Mock

System used for

training purposes only

VALIDATE MSG FUNCTIONAL
DESCRIPTION

Validate MSG function checks that each
message is valid by evaluating content for

assigned Gun ID, boundary conditions, and
message sequence based on last message
received. If the message is validated, the

appropriate action function is called based
on message content (e.g., Select Gun,

Deactivate Gun, Fire Command, Master
Reset, BIT On, Activate Laser Aiming

Device, De-Activate Laser Aiming Device or
Move Gun).

5 5 5
NSWCDD-PN-14-00391 is approved for Distribution Statement A:

Approved for Public Release; distribution is unlimited.

VIPPS Event Diagram
Use for Column 2.g

Fire gun with incorrect

Gun Address

Wrong Gun Address

passes verification checks

(as valid Fire Command EF)

Failure of gun software to

validate EF gun address against

intended gun address for match

OR

Incorrect designation in

gun specific datafile (e.g.,

wrong gun number in

adaptation data)

Coding Error

OR

Gun ID

corrupted, valid,

and undetected

(C2 or GCC)

Gun ID set

incorrectly for

intended gun

AND

Failure of

operator
Failure of C2

Gun ID set

correctly for

different gun

CRC Failure

(C2 or GCC)

OR

Process EF_ID

verifies message

content including a

valid Gun ID

Validate MSG

ensures Gun ID

correct for intended

Gun

VIPPS is a Mock

System used for

training purposes only

6 6 6
NSWCDD-PN-14-00391 is approved for Distribution Statement A:

Approved for Public Release; distribution is unlimited.

MIL-STD-882E Software Control Categories
Use for Column 2.g

Level Name Description

1 Autonomous

(AT)

Software functionality that exercises autonomous control authority over potentially safety-significant hardware systems,

subsystems, or components without the possibility of predetermined safe detection and intervention by a control entity to

preclude the occurrence of a mishap or hazard. (This definition includes complex system/software functionality with multiple

subsystems, interacting parallel processors, multiple interfaces, and safety-critical functions that are time critical.)

2 Semi-

Autonomous

(SAT)

Software functionality that exercises control authority over potentially safety-significant hardware systems, subsystems, or

components, allowing time for predetermined safe detection and intervention by independent safety mechanisms to mitigate or

control the mishap or hazard. (This definition includes the control of moderately complex system/software functionality, no

parallel processing, or few interfaces, but other safety systems/mechanisms can partially mitigate. System and software fault

detection and annunciation notifies the control entity of the need for required safety actions.)

Software item that displays safety-significant information requiring immediate operator entity to execute a predetermined action

for mitigation or control over a mishap or hazard. Software exception, failure, fault, or delay will allow, or fail to prevent, mishap

occurrence. (This definition assumes that the safety-critical display information may be time critical, but the time available does

not exceed the time required for adequate control entity response and hazard control.)

3 Redundant

Fault Tolerant

(RFT)

Software functionality that issues commands over safety significant hardware systems, subsystems, or components requiring a

control entity to complete the command function. The system detection and functional reaction includes redundant, independent

fault tolerant mechanisms for each defined hazardous condition. (This definition assumes that there is adequate fault detection,

annunciation,, and system recovery to prevent the hazard occurrence if software fails, malfunctions, or degrades. There are

redutolerancendant sources of safety-significant information, and mitigating functionality can respond within any time-critical

period.)

Software that generates information of a safety-critical nature used to make critical decisions. The system includes several

redundant, independent fault tolerant mechanisms for each hazardous condition, detection, and display.

4 Influential Software generates information of a safety-related nature used to make decisions by the operator, but does not require operator

action to avoid a mishap.

5 No Safety

Impact

(NSI)

Software functionality that does not possess command or control authority over safety-significant hardware systems,

subsystems, or components and does not provide safety-significant information. Software does not provide safety-significant or

time sensitive data or information that requires control entity interaction. Software does not transport or resolve communication

of safety-significant or time sensitive data.

or

or

7 7 7
NSWCDD-PN-14-00391 is approved for Distribution Statement A:

Approved for Public Release; distribution is unlimited.

MIL-STD-882E Software Control Categories
Use for Column 2.g

Level Name Description

1 Autonomous

(AT)

Software functionality that exercises autonomous control authority over potentially safety-significant hardware systems,

subsystems, or components without the possibility of predetermined safe detection and intervention by a control entity to

preclude the occurrence of a mishap or hazard. (This definition includes complex system/software functionality with multiple

subsystems, interacting parallel processors, multiple interfaces, and safety-critical functions that are time critical.)

2 Semi-

Autonomous

(SAT)

Software functionality that exercises control authority over potentially safety-significant hardware systems, subsystems, or

components, allowing time for predetermined safe detection and intervention by independent safety mechanisms to mitigate or

control the mishap or hazard. (This definition includes the control of moderately complex system/software functionality, no

parallel processing, or few interfaces, but other safety systems/mechanisms can partially mitigate. System and software fault

detection and annunciation notifies the control entity of the need for required safety actions.)

Software item that displays safety-significant information requiring immediate operator entity to execute a predetermined action

for mitigation or control over a mishap or hazard. Software exception, failure, fault, or delay will allow, or fail to prevent, mishap

occurrence. (This definition assumes that the safety-critical display information may be time critical, but the time available does

not exceed the time required for adequate control entity response and hazard control.)

3 Redundant

Fault Tolerant

(RFT)

Software functionality that issues commands over safety significant hardware systems, subsystems, or components requiring a

control entity to complete the command function. The system detection and functional reaction includes redundant, independent

fault tolerant mechanisms for each defined hazardous condition. (This definition assumes that there is adequate fault detection,

annunciation,, and system recovery to prevent the hazard occurrence if software fails, malfunctions, or degrades. There are

redutolerancendant sources of safety-significant information, and mitigating functionality can respond within any time-critical

period.)

Software that generates information of a safety-critical nature used to make critical decisions. The system includes several

redundant, independent fault tolerant mechanisms for each hazardous condition, detection, and display.

4 Influential Software generates information of a safety-related nature used to make decisions by the operator, but does not require operator

action to avoid a mishap.

5 No Safety

Impact

(NSI)

Software functionality that does not possess command or control authority over safety-significant hardware systems,

subsystems, or components and does not provide safety-significant information. Software does not provide safety-significant or

time sensitive data or information that requires control entity interaction. Software does not transport or resolve communication

of safety-significant or time sensitive data.

• Autonomous CONTROL over safety hardware systems, and

• No possibility of detection and intervention by control entity

• CONTROL over safety hardware systems, and

• Time for detection and intervention by INDEPENDENT safety mechanism

• Issues commands over safety hardware system, and

• Requires control entity to complete command function, and

• Includes REDUNDANT, INDEPENDENT fault tolerant mechanisms

• Generates information of safety-critical nature to make decisions, and

• System includes SEVERAL REDUNDANT, INDEPENDENT fault tolerant

mechanisms

• Generates information of safety-related nature to make decisions by the

operator, and

• Does not require operator action to avoid mishap

• SW that displays safety-significant data for immediate predetermined

operator action to prevent mishap, or

• The SW fault or delay will allow, or fail to prevent, the mishap

or

or

8 8 8
NSWCDD-PN-14-00391 is approved for Distribution Statement A:

Approved for Public Release; distribution is unlimited.

MIL-STD-882E Software Criticality Index
Use for Column 2.h and 2.i

Software Safety Criticality Matrix

 Severity Category

Software

Control

Category

Catastrophic

(1)

Critical

(2)

Marginal

(3)

Negligible

(4)

1 SwCI 1 SwCI 1 SwCI 3 SwCI 4

2 SwCI 1 SwCI 2 SwCI 3 SwCI 4

3 SwCI 2 SwCI 3 SwCI 4 SwCI 4

4 SwCI 3 SwCI 4 SwCI 4 SwCI 4

5 SwCI 5 SwCI 5 SwCI 5 SwCI 5

For Gun Software Function : Validate_MSG

SwCI Level of Rigor

SwCI 1
Program shall perform analysis of requirements, architecture, design, and code; and
conduct in-depth safety-specific testing.

SwCI 2
Program shall perform analysis of requirements, architecture, and design; and conduct in-
depth safety-specific testing.

SwCI 3
Program shall perform analysis of requirements and architecture, and conduct in-depth
safety-specific testing.

SwCI 4 Program shall conduct safety-specific testing.

SwCI 5
Once assessed by safety engineering as Not Safety, then no safety specific analysis or
verification is required.

VIPPS is a Mock

System used for

training purposes only

9 9 9
NSWCDD-PN-14-00391 is approved for Distribution Statement A:

Approved for Public Release; distribution is unlimited.

SOFTWARE SAFETY

TUTORIAL

STUDENT HANDOUT

ARCHITECTURAL AND DESIGN

ANALYSIS

10 10 10
NSWCDD-PN-14-00391 is approved for Distribution Statement A:

Approved for Public Release; distribution is unlimited.

Architecture and Design Analysis

 Task 1: Identify causal factors using SW generic requirements at the architecture

level

 Review AOP-52 definitions and JSSSEH Generic Requirements (E.8.5, E.3.13)

 Review architectural data against current hazards and functional hazard analysis

 Use the SSF-6 Interface and Function Architecture Diagram to identify and record causal

factors

 Task 2: Identify causal factors using previous architecture hazard analysis at the

design level

 Compare SSF-6 Control Flow Analysis of Interrupt Design and PFS approved Control

Flow Analysis of Interrupt (Concept of Execution) Architecture Diagram

 Review design data against current hazards and previous architectural analysis and

determine if additional risk is created and record causal factors identified

11 11 11
NSWCDD-PN-14-00391 is approved for Distribution Statement A:

Approved for Public Release; distribution is unlimited.

Task 1: JSSSEH Generic Requirements

 E.8.5 Data Transfer Messages

 Data transfer messages shall be of a predetermined format and

content. Each transfer shall contain a word or character string

indicating the message length (if variable), the type of data, and

the content of the message. At a minimum, parity checks and

checksums shall be used for verification of correct data transfer.

CRCs shall be used where practical. No information from data

transfer messages shall be used prior to verification of correct

data transfer.

 E.3.13 Positive Feedback Mechanisms

 Software control of critical functions shall have feedback

mechanisms that give positive indications of the function’s

occurrence.

Analyze architecture to

ensure it supports

verification of safety

data

Analyze architecture

then design to ensure

they support positive

feedback for safety

functions

Exercise #1

STUDENT

REFERENCE

12 12 12
NSWCDD-PN-14-00391 is approved for Distribution Statement A:

Approved for Public Release; distribution is unlimited.

Task 1: SW Causal Factors

Identified by Architectural Analysis

C2

Subsystem

Redundant No Fire Zone Controller

Process EF_ID

Receive EF commands

Process EF commands

Validate Msg

Validate command is in sequence

Validate command is intended for

ADRS Gun

Gun Subsystem

SSF-6 Interface and Function

Architecture Diagram
VIPPS is a Mock

System used for

training purposes only

13 13 13
NSWCDD-PN-14-00391 is approved for Distribution Statement A:

Approved for Public Release; distribution is unlimited.

Task 1: SW Causal Factors

Identified by Architectural Analysis

Mishap Hazard Causal Factor Description

 Based on JSSSEH Violations

Analysis Source

Engage Friendly

/ non-hostile

target

Fire command

processed by

the wrong gun

results in

accidental

firing by the

(wrong) gun

SSF-6 Interface

and Function

Architecture

Diagram

SSF-6 Interface

and Function

Architecture

Diagram

VIPPS is a Mock

System used for

training purposes only

14 14 14
NSWCDD-PN-14-00391 is approved for Distribution Statement A:

Approved for Public Release; distribution is unlimited.

Task 2: VIPPS PFS Approved Control

Flow Analysis of Interrupt Architecture

Interrupt is valid

Interrupt allowed in

current code segment? N

Store Safety

Significant Data

Stop main program task

execution, save new

messages as they come in

Perform Interrupt

Processing

Restore Safety

Significant Data

Resume main program

processing

Process saved messages in the

order received

Concept of Execution

Y

Pause main program

processing

STUDENT

REFERENCE

VIPPS is a Mock

System used for

training purposes only

15 15 15
NSWCDD-PN-14-00391 is approved for Distribution Statement A:

Approved for Public Release; distribution is unlimited.

Task 2: SSF-6 Control Flow Analysis of

Interrupt Design

Interrupt is

valid

Y

N

Pause main

program

processing

Resume main program

Processing

Restore Safety

Significant Data

Items:

GunID

EFmessage

Resume main

program execution Stop main

program task

execution

Perform Interrupt

Processing

Store SS Data Items:

Deactivate_CMD_flag

GunID

EFmessage

Interrupt allowed in

current code segment?

VIPPS is a Mock

System used for

training purposes only

Y

16 16 16
NSWCDD-PN-14-00391 is approved for Distribution Statement A:

Approved for Public Release; distribution is unlimited.

Task 2: SW Causal Factors

Identified by Design Analysis

Mishap Hazard Causal Factor Description

Based on Design Evaluation

Analysis Source

Engage Friendly /

non-hostile target

Fire command

processed by

the wrong gun

results in

accidental firing

by the (wrong)

gun

Comparison of SSF-

6 Control Flow

Analysis of Interrupt

Design and SSF-6

Control Flow

Analysis of Interrupt

Architecture

Comparison of SSF-

6 Control Flow

Analysis of Interrupt

Design and SSF-6

Control Flow

Analysis of Interrupt

Architecture

VIPPS is a Mock

System used for

training purposes only

17 17 17
NSWCDD-PN-14-00391 is approved for Distribution Statement A:

Approved for Public Release; distribution is unlimited.

SOFTWARE SAFETY

TUTORIAL

STUDENT HANDOUT

CODE

ANALYSIS

18 18 18
NSWCDD-PN-14-00391 is approved for Distribution Statement A:

Approved for Public Release; distribution is unlimited.

 Task 1: Data Structure Analysis - For the given safety significant data

items define the data types and usages using highlighted yellow code.

Define any identified issues.

 Task 2: Data Flow Analysis - Conduct data flow analysis to identify

errors in the use of data that is accessed by multiple routines:

 Find “GunID” in each of the functions listed

 Document the value of the data item from each function

 After all values captured, determine if a safety concern exists and

document rationale

 Task 3: Use AOP-52 requirement, compliance assessment, and

function to define compliance rationale. Define any safety issues.

Code Analysis

19 19 19
NSWCDD-PN-14-00391 is approved for Distribution Statement A:

Approved for Public Release; distribution is unlimited.

Common Data Types

 Character (char):

 This is a single character, like X, £, 4, or *

 String:

 This is a “string” of characters of any length

 Integer (int):

 A whole number - whole meaning there are no digits after a decimal

point. So 65 would be a valid integer; 65.78 would not.

 Floating-point number (float):

 A number that may have digits after the decimal place. 65.00 is

technically a floating point number, even though it could be

represented just as easily as an integer as 65. It takes more memory

to store a float, which is why there is a distinction instead of just

creating a “number” datatype.

 Boolean (bool):

 A variable to represent true or false (or it could also mean 0 or 1)

20 20 20
NSWCDD-PN-14-00391 is approved for Distribution Statement A:

Approved for Public Release; distribution is unlimited.

//processEF_ID Function – is called by mainGun Function to initiate a CRC check and EF message verification after an

EF command is received from C2

//declare Local variables //A local variable is one declared within the body of a function.

Boolean CRC_pass, //This is a Boolean type variable; used to indicate the result of the CRC check. If the check is ‘pass’, the

//variable will be set to True (1). Otherwise the variable will be set to False (0).

Call CRC_Function and store the return value in CRC_pass;

 //CRC function is called to ensure the integrity of the message bits in the received EF command.

If CRC_pass is equal to true,

then //CRC_pass=’true’ means the bits in the received EF command have not been corrupted.

Send an ID02 back to C2, //Send an Acknowledge (ID02) to C2

Call validateMsgFunction, //Call validate message function to validate command is in sequence and sent to the intended gun address

 Else //CRC_pass=’false’ means the bits in the received EF command have been corrupted.

Send an ID04 back to C2; //GCC then transmits an Illegal Message (ID04) to the C2

//EndIf

//End of processEF_ID Function

VIPPS is a Mock

System used for

training purposes only

STUDENT

REFERENCE

 processEF_ID Function

21 21 21
NSWCDD-PN-14-00391 is approved for Distribution Statement A:

Approved for Public Release; distribution is unlimited.

**

//CRC Function – is called by processEF_ID Function to check the received EF command is a valid EF message or not.

//declare Local variables

Boolean CRC_pass, //Boolean type variable: 1(True) or 0(False) value

Integer calculated_CRC, saved_CRC,

Get the values from the fields in the EFmessage to perform CRC calculation; //Values used to perform the CRC calculation are stored in

//word 0 (bit 31-0) and half of word 1 (bit 31-16).

Calculate the CRC based on those values and store the result in calculate_CRC;

Get the pre-calculated CRC value from EFmessage and store it in the saved_CRC variable; //The pre-calculated CRC value is stored in word 1 (bit15-0)

//of each EF message.

If calculate_CRC is equal to saved_CRC,

then

Call verifyGunIDFunction and store the return value in verifyGunID; //Call the verifyGunID Function to compare the gun IDs

//between the config file and the received EF

If verifyGunID is equal to true,

then

Set CRC_pass to true; //Set the CRC check to be true if and only if the CRC values

//EndIf //are same and the gun IDs are the same.

Else

Set CRC_pass to false;

//EndIf

return the CRC_pass value to the called function; //Return either a 1or 0 value to the processEF_ID function.

//End of CRC Function

VIPPS is a Mock

System used for

training purposes only

STUDENT

REFERENCE

CRC_Function

22 22 22
NSWCDD-PN-14-00391 is approved for Distribution Statement A:

Approved for Public Release; distribution is unlimited.

mainGun Function
VIPPS is a Mock

System used for

training purposes only

STUDENT

REFERENCE

 //declare Global Variables – a global variable is a variable declared outside all functions.

Long EFmessage, //This is a 64-bit variable; used to store two 32-bit word EF data.

Integer GunID, //This is an integer type variable; used to store the value of Gun ID

Float defaultAZ, //This is a float type variable; used to store the default azimuth position.

Integer currentAZ, //This is an integer type variable used to store the current azimuth position

Integer defaultEL, currentEL, //Both are integer type variables; used to store the elevation position

Integer defaultGunSpeed, currentGunSpeed, //Both are integer type variables; used to store the gun speed

Boolean de_activate_CMD_flag, //This is a Boolean type variable which has a either True (1) or False (0) value; used to indicate whether or

//not the deactivate command has been received

Boolean verifyGunID,

//mainGun Function – where GCC program starts execution.

//Start the mainGun Function

Get the value of the gun address from Config File and store it in the GunID variable; //Gun address is equal to 2 in the Configuration File

Get the value of the AZ position from Config File and store it in the defaultAZ variable;

Set the value of the currentAZ variable equal to the value of the defaultAZ variable; //The value after decimal point will be truncated if a float

//number is going to be saved in an integer type variable.

.

.

.

Call processEF_IDFunction;

//End of mainGun Function

23 23 23
NSWCDD-PN-14-00391 is approved for Distribution Statement A:

Approved for Public Release; distribution is unlimited.

Task 1: Data Structure Analysis Exercise

Variable

Name

Data

Type

Global/

Local

Where is Variable

used/referenced

Variable used/referenced

consistently?

If not, explain and provide any safety

implications

CRC_pass 1. processEF_ID

Function

2. CRC_Function

1. currentAZ

2. defaultAZ

1.

2.

1.

2.

1. mainGun Function

VIPPS is a Mock

System used for

training purposes only

STUDENT HANDOUT - Populate Table for the given safety

significant data items using highlighted yellow code

24 24 24
NSWCDD-PN-14-00391 is approved for Distribution Statement A:

Approved for Public Release; distribution is unlimited.

verifyGunID Function

VIPPS is a Mock

System used for

training purposes only

STUDENT

REFERENCE

//verifyGunID Function – is called to check the value of Gun ID specified in the received EF match with the value of Gun

ID specified in the config file.

//Start verifyGunID Function

//declare Local variable //A local variable is one declared within the body of a

//function.

Integer gunIDfrmMsg, //An integer type variable used to store the value of gun

//address from the received EF

Boolean verifyGunID_flag, //A Boolean type variable used to indicate the pass or fail

//condition of checking the values of gun addresses between

//the received EF and the config file.

Set GunID equal to 0; //Reset the value of GunID to 0 (zero). Recall that a GunID of

//0 is valid and represents Gun 1.

Call Call getGunIDfrmMsgFunction and store the return value into gunIDfrmMsg variable;

If gunIDfrmMsg is equal to GunID,

then

Set verifyGunID_flag to True,

 Call FireGunFunction, //Call the FireGunFunction to initiate sending an EF39 (Fire

//Command)

Call validateMsgFunction; //Call the ValidateMsgFunction to validate content of the

//current EF received from C2

Else

 Set verifyGunID_flag to False;

//EndIf

return the verifyGunID_flag value to the called function; //Return either 1 or 0 value of verifyGunID_flag to the

 //validateMsg Function.

//End of verifyGunID Function

25 25 25
NSWCDD-PN-14-00391 is approved for Distribution Statement A:

Approved for Public Release; distribution is unlimited.

Task 2: Data Flow Analysis Exercise

Data

Item

Data

type

Global/

Local

Where is Variable

used/referenced

Value stored in

Variable

Any safety concerns?

[If yes, explain]

GunID Integer Global 1. declare Global

variable

2. mainGun Function

3. verifyGunID Function

VIPPS is a Mock

System used for

training purposes only

STUDENT HANDOUT - Populate Table for GunID using

highlighted yellow code

26 26 26
NSWCDD-PN-14-00391 is approved for Distribution Statement A:

Approved for Public Release; distribution is unlimited.

AOP-52 Compliance Assessment

Definition of Terms

Term Definition

Flags and

Variables

Flags and variable names shall be unique.

Flags and variables shall have a single purpose and

shall be defined and initialized prior to use.

Execution Path Safety Critical Computing System Functions (SCCSFs) shall

have one and only one possible path leading to their execution.

Conditional

Statements

Conditional statements shall have all possible conditions

satisfied and be under full software control (i.e., there shall be

no potential unresolved input to the conditional statement).

Conditional statements shall be analyzed to ensure that the

conditions are reasonable for the task and that all potential

conditions are satisfied and not left to a default condition. All

condition statements shall be annotated with their purpose and

expected outcome for given conditions.

27 27 27
NSWCDD-PN-14-00391 is approved for Distribution Statement A:

Approved for Public Release; distribution is unlimited.

moveGun Function

STUDENT

REFERENCE

VIPPS is a Mock

System used for

training purposes only

//moveGun Function – which is called by validateMsg Function to command the gun motor to move gun to the specified AZ

and EL positions with specified speed.

//Start moveGun Function which is passing three parameter variables i.e. AZ, EL, and gun speed

//declare Local variables //A local variable is one declared within the body of a function.

Integer commandedAZ,

Integer commandedEL,

Integer commandedGunSpeed,

Boolean moveGunStatus_flag = False, //A Boolean value (‘True’ or ‘False’) used to reflect if the gun is

//now pointing in the direction specified in the message; it is

//initialized at not pointing to the specified direction

Get the value of AZ position from the parameter (defaultAZ) and store it in the commandedAZ variable; //Set the commandedAZ value

Get the value of EL position from the parameter (defaultEL) and store it in the commandedEL variable; //Set the commandedEL value

 //Set the commandedGunSpeed value

If the value of the commandedAZ variable is “not” equal to the value of the currentAZ variable,

then

Call moveAZ_MotorFunction (commandedAZ, commandedGunSpeed); // This function commands the gun azimuth movement

//EndIf

.

.

.

//End of moveGun Function

28 28 28
NSWCDD-PN-14-00391 is approved for Distribution Statement A:

Approved for Public Release; distribution is unlimited.

verifyGunID Function
VIPPS is a Mock

System used for

training purposes only
STUDENT

REFERENCE

//verifyGunID Function – is called to check the value of Gun ID specified in the received EF match with the value of Gun

ID specified in the config file.

//Start verifyGunID Function

//declare Local variable //A local variable is one declared within the body of a

//function.

Integer gunIDfrmMsg, //An integer type variable used to store the value of gun

//address from the received EF

Boolean verifyGunID_flag, //A Boolean type variable used to indicate the pass or fail

//condition of checking the values of gun addresses between

//the received EF and the config file.

Call Call getGunIDfrmMsgFunction and store the return value into gunIDfrmMsg variable;

If gunIDfrmMsg is equal to GunID,

then

Set verifyGunID_flag to True,

 Call FireGunFunction, //Call the FireGunFunction to initiate sending an EF39 (Fire

//Command)

Call validateMsgFunction; //Call the ValidateMsgFunction to validate content of the

//current EF received from C2

Else

 Set verifyGunID_flag to False;

//EndIf

return the verifyGunID_flag value to the called function; //Return either 1 or 0 value of verifyGunID_flag to the

 //validateMsg Function.

//End of verifyGunID Function

29 29 29
NSWCDD-PN-14-00391 is approved for Distribution Statement A:

Approved for Public Release; distribution is unlimited.

Task 3: AOP-52 Code

Compliance Exercise

AOP–52

Requirement

Compliant

Function where

code error is

located

Rationale for non-

compliance

Potential Safety

Impact(s)

Conditional

Statements
No validateMsgFunction

Select and power on

the gun for ANY EF

except for EF 21 -

GSS Select

Will result in the Gun

remaining active

(selected and powered

on) no matter what EF is

received from C2,

including an EF 23 - Safe

Deselect (Power Off)

Flags and

Variables
No moveGunFunction

Execution

Path
No verifyGunIDFunction

VIPPS is a Mock

System used for

training purposes only STUDENT HANDOUT

30 30 30
NSWCDD-PN-14-00391 is approved for Distribution Statement A:

Approved for Public Release; distribution is unlimited.

SOFTWARE SAFETY

TUTORIAL

STUDENT HANDOUT

TECHNOLOGY

INSERTION

31 31 31
NSWCDD-PN-14-00391 is approved for Distribution Statement A:

Approved for Public Release; distribution is unlimited.

Task 1: Technology Insertion of Ethernet

Protocol

 Task 1: Review reference material on Ethernet Protocol.

Based on your review of the technology, define:
 Any concerns about using the technology

 Any recommendations concerning design selections or mitigations

Technology of

Concern
Concerns(s) Recommendation(s)

Ethernet

Protocol

32 32 32
NSWCDD-PN-14-00391 is approved for Distribution Statement A:

Approved for Public Release; distribution is unlimited.

Task 2: Technology Insertion of TCP

Protocol

 Task 2: Review reference material on TCP Protocol.

Based on your review of the technology, define:
 Any concerns about using the technology

 Any recommendations concerning design selections or mitigations

Technology of

Concern
Concerns(s) Recommendation(s)

TCP Protocol

